Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration.
نویسندگان
چکیده
Transdifferentiation from retinal pigment epithelium (RPE) to neural retina (NR) was studied under a new culture system as an experimental model for newt retinal regeneration. Adult newt RPEs were organ cultured with surrounding connective tissues, such as the choroid and sclera, on a filter membrane. Around day 7 in vitro, lightly pigmented "neuron-like cells" with neuritic processes were found migrating out from the explant onto the filter membrane. Their number gradually increased day by day. BrdU-labeling study showed that RPE cells initiated to proliferate under the culture condition on day 4 in vitro, temporally correlating to the time course of retinal regeneration in vivo. Histological observations of cultured explants showed that proliferating RPE cells did not form the stratified structure typically observed in the NR but they rather migrated out from the explants. Neuronal differentiation was examined by immunohistochemical detection of various neuron-specific proteins; HPC-1 (syntaxin), GABA, serotonin, rhodopsin, and acetylated tubulin. Immunoreactive cells for these proteins always possessed fine and long neurite-like processes. Numerous lightly pigmented cells with neuron-like morphology showed HPC-1 immunoreactivity. Fibroblast growth factor-2 (FGF-2), known as a potent factor for the transdifferentiation of ocular tissues in various vertebrates, substantially increased the numbers of both neuron-like cells and HPC-1-like immunoreactive cells in a dose-dependent manner. These results indicate that our culture method ensures neural differentiation of newt RPE cells in vitro and provides, for the first time, a suitable in vitro experimental model system for studying tissue-intrinsic factors responsible for newt retinal regeneration.
منابع مشابه
A comparative study of amphibian retinal regeneration by tissue culture technology
Amphibian retinal regeneration has been intensely studied, using the urodele as a model organism. Transdifferentiation of retinal pigment epithelium (RPE) into retinal stem cells play a crucial role in regeneration. Recently, it was found that anurans (Xenopus laevis) in the adult stage also can regenerate the retina similarly to the newt. This provides a new tool of a model for the molecular m...
متن کاملTissue interaction between the retinal pigment epithelium and the choroid triggers retinal regeneration of the newt Cynops pyrrhogaster.
Complete retinal regeneration in adult animals occurs only in certain urodele amphibians, in which the retinal pigmented epithelial cells (RPE) undergo transdifferentiation to produce all cell types constituting the neural retina. A similar mechanism also appears to be involved in retinal regeneration in the embryonic stage of some other species, but the nature of this mechanism has not yet bee...
متن کاملNeural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neura...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملHematological- and Neurological-Expressed Sequence 1 Gene Products in Progenitor Cells during Newt Retinal Development
Urodele amphibians such as Japanese common newts have a remarkable ability to regenerate their injured neural retina, even as adults. We found that hematological- and neurological-expressed sequence 1 (Hn1) gene was induced in depigmented retinal pigment epithelial (RPE) cells, and its expression was maintained at later stages of newt retinal regeneration. In this study, we investigated the dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurobiology
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2002